Charge-neutral electronic excitations in quantum insulators | Nature
Nature (2024)Cite this article
Metrics details
Experiments on quantum materials have uncovered many interesting quantum phases ranging from superconductivity to a variety of topological quantum matter including the recently observed fractional quantum anomalous Hall insulators. The findings have come in parallel with the development of approaches to probe the rich excitations inherent in such systems. In contrast to observing electrically charged excitations, the detection of charge-neutral electronic excitations in condensed matter remains difficult, although they are essential to understanding a large class of strongly correlated phases. Low-energy neutral excitations are especially important in characterizing unconventional phases featuring electron fractionalization, such as quantum spin liquids, spin ices and insulators with neutral Fermi surfaces. In this Perspective, we discuss searches for neutral fermionic, bosonic or anyonic excitations in unconventional insulators, highlighting theoretical and experimental progress in probing excitonic insulators, new quantum spin liquid candidates and emergent correlated insulators based on two-dimensional layered crystals and moiré materials. We outline the promises and challenges in probing and using quantum insulators, and discuss exciting new opportunities for future advancements offered by ideas rooted in next-generation quantum materials, devices and experimental schemes.
This is a preview of subscription content, access via your institution
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
Prices may be subject to local taxes which are calculated during checkout
Giamarchi, T. Quantum Physics in One Dimension (Oxford Univ. Press, 2003).
Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).
Article ADS Google Scholar
Coleman, P. Theories of non-Fermi liquid behavior in heavy fermions. Phys. B Condens. Matter 259–261, 353–358 (1999).
Article ADS Google Scholar
Stewart, G. R. Non-Fermi-liquid behavior in d- and f-electron metals. Rev. Mod. Phys. 73, 797–855 (2001).
Article ADS Google Scholar
Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 124, 076801 (2020).
Article ADS PubMed Google Scholar
Jaoui, A. et al. Quantum critical behaviour in magic-angle twisted bilayer graphene. Nat. Phys. 18, 633–638 (2022).
Article Google Scholar
Wang, P. et al. One-dimensional Luttinger liquids in a two-dimensional moiré lattice. Nature 605, 57–62 (2022).
Article ADS PubMed Google Scholar
Yu, G. et al. Evidence for two dimensional anisotropic Luttinger liquids at Millikelvin temperatures. Nat. Commun. 14, 7025 (2023).
Article ADS PubMed PubMed Central Google Scholar
Jackiw, R. & Rebbi, C. Solitons with fermion number ½. Phys. Rev. D 13, 3398–3409 (1976).
Article ADS MathSciNet Google Scholar
Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).
Article ADS Google Scholar
Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).
Article ADS Google Scholar
Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984).
Article ADS Google Scholar
Stern, A. Anyons and the quantum Hall effect—a pedagogical review. Ann. Phys. 323, 204–249 (2008).
Article ADS MathSciNet Google Scholar
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).
Article ADS MathSciNet Google Scholar
Anderson, P. W. Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973). This paper proposed the RVB state, which initiated the research of spin liquids.
Article Google Scholar
Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).
Article ADS PubMed Google Scholar
Moessner, R. & Sondhi, S. L. Resonating valence bond phase in the triangular lattice quantum dimer model. Phys. Rev. Lett. 86, 1881–1884 (2001). This paper concluded the search for an RVB liquid by demonstrating its existence in a microscopic model.
Article ADS PubMed Google Scholar
Moessner, R. & Moore, J. E. Topological Phases of Matter (Cambridge Univ. Press, 2021).
Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).
Article ADS MathSciNet Google Scholar
Wen, X.-G. Quantum orders and symmetric spin liquids. Phys. Rev. B 65, 165113 (2002).
Article ADS Google Scholar
Read, N. & Chakraborty, B. Statistics of the excitations of the resonating-valence-bond state. Phys. Rev. B 40, 7133–7140 (1989).
Article ADS Google Scholar
Kalmeyer, V. & Laughlin, R. B. Equivalence of the resonating-valence-bond and fractional quantum Hall states. Phys. Rev. Lett. 59, 2095–2098 (1987).
Article ADS PubMed Google Scholar
Pace, S. D., Morampudi, S. C., Moessner, R. & Laumann, C. R. Emergent fine structure constant of quantum spin ice is large. Phys. Rev. Lett. 127, 117205 (2021).
Article ADS PubMed Google Scholar
Hermele, M. et al. Stability of U(1) spin liquids in two dimensions. Phys. Rev. B 70, 214437 (2004).
Article ADS Google Scholar
Lee, S.-S. Stability of the U(1) spin liquid with a spinon Fermi surface in 2+1 dimensions. Phys. Rev. B 78, 085129 (2008).
Article ADS Google Scholar
Huse, D. A., Krauth, W., Moessner, R. & Sondhi, S. L. Coulomb and liquid dimer models in three dimensions. Phys. Rev. Lett. 91, 167004 (2003).
Article ADS PubMed Google Scholar
Hermele, M., Fisher, M. P. A. & Balents, L. Pyrochlore photons: the U(1) spin liquid in a S = 1/2 three-dimensional frustrated magnet. Phys. Rev. B 69, 064404 (2004).
Article ADS Google Scholar
Castelnovo, C., Moessner, R. & Sondhi, S. L. Magnetic monopoles in spin ice. Nature 451, 42–45 (2008).
Article ADS PubMed Google Scholar
Ng, T.-K. & Lee, P. A. Power-law conductivity inside the Mott gap: application to κ-(BEDT–TTF)2Cu2(CN)3. Phys. Rev. Lett. 99, 156402 (2007).
Article ADS PubMed Google Scholar
Motrunich, O. I. Orbital magnetic field effects in spin liquid with spinon Fermi sea: possible application to κ-(ET)2 (Cu)2(CN)3. Phys. Rev. B 73, 155115 (2006). This paper predicted spinon Landau quantization in magnetic fields, a key step in the search for neutral fermions using quantum oscillations.
Article ADS Google Scholar
Sodemann, I., Chowdhury, D. & Senthil, T. Quantum oscillations in insulators with neutral Fermi surfaces. Phys. Rev. B 97, 045152 (2018). This paper developed a theory of quantum oscillations in observables such as resistance and magnetization induced by spinon Landau quantization.
Article ADS Google Scholar
Rao, P. & Sodemann, I. Cyclotron resonance inside the Mott gap: a fingerprint of emergent neutral fermions. Phys. Rev. B 100, 155150 (2019).
Article ADS Google Scholar
Khoo, J. Y., Pientka, F., Lee, P. A. & Villadiego, I. S. Probing the quantum noise of the spinon Fermi surface with NV centers. Phys. Rev. B 106, 115108 (2022).
Article ADS Google Scholar
Jérome, D., Rice, T. M. & Kohn, W. Excitonic insulator. Phys. Rev. 158, 462–475 (1967).
Article ADS Google Scholar
Kohn, W. Excitonic phases. Phys. Rev. Lett. 19, 439–442 (1967).
Article ADS Google Scholar
Blatt, J. M., Böer, K. W. & Brandt, W. Bose-Einstein condensation of excitons. Phys. Rev. 126, 1691–1692 (1962).
Article ADS Google Scholar
Mott, N. F. The transition to the metallic state. Philos. Mag. 6, 287–309 (1961).
Article ADS Google Scholar
Halperin, B. I. & Rice, T. M. Possible anomalies at a semimetal-semiconductor transition. Rev. Mod. Phys. 40, 755–766 (1968).
Article ADS Google Scholar
Kwan, Y. H., Devakul, T., Sondhi, S. L. & Parameswaran, S. A. Theory of competing excitonic orders in insulating WTe2 monolayers. Phys. Rev. B 104, 125133 (2021).
Article ADS Google Scholar
Wang, Y.-Q., Papaj, M. & Moore, J. E. Breakdown of helical edge state topologically protected conductance in time-reversal-breaking excitonic insulators. Phys. Rev. B 108, 205420 (2023).
Article ADS Google Scholar
Hu, Y., Venderbos, J. W. F. & Kane, C. L. Fractional excitonic insulator. Phys. Rev. Lett. 121, 126601 (2018).
Article ADS PubMed Google Scholar
Chowdhury, D., Sodemann, I. & Senthil, T. Mixed-valence insulators with neutral Fermi surfaces. Nat. Commun. 9, 1766 (2018).
Article ADS PubMed PubMed Central Google Scholar
Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).
Article Google Scholar
Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).
Article ADS MathSciNet Google Scholar
Eisenstein, J. P. Exciton condensation in bilayer quantum Hall systems. Annu. Rev. Condens. Matter Phys. 5, 159–181 (2014).
Article ADS Google Scholar
Liu, X., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).
Article Google Scholar
Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017).
Article Google Scholar
Du, L. et al. Evidence for a topological excitonic insulator in InAs/GaSb bilayers. Nat. Commun. 8, 1971 (2017).
Article ADS PubMed PubMed Central Google Scholar
Yu, W. et al. Anomalously large resistance at the charge neutrality point in a zero-gap InAs/GaSb bilayer. New J. Phys. 20, 053062 (2018).
Article ADS Google Scholar
Chen, D. et al. Excitonic insulator in a heterojunction moiré superlattice. Nat. Phys. 18, 1171–1176 (2022).
Article Google Scholar
Zhang, Z. et al. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2. Nat. Phys. 18, 1214–1220 (2022).
Article Google Scholar
Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).
Article ADS PubMed Google Scholar
Cercellier, H. et al. Evidence for an excitonic insulator phase in 1T TiSe2. Phys. Rev. Lett. 99, 146403 (2007).
Article ADS PubMed Google Scholar
Kogar, A. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314–1317 (2017).
Article ADS PubMed Google Scholar
Campbell, D. J. et al. Intrinsic insulating ground state in transition metal dichalcogenide TiSe2. Phys. Rev. Mater. 3, 053402 (2019).
Article Google Scholar
Li, Z. et al. Possible excitonic insulating phase in quantum-confined Sb nanoflakes. Nano Lett. 19, 4960–4964 (2019).
Article ADS PubMed Google Scholar
Wakisaka, Y. et al. Excitonic insulator state in Ta2NiSe5 probed by photoemission spectroscopy. Phys. Rev. Lett. 103, 026402 (2009).
Article ADS PubMed Google Scholar
Lu, Y. F. et al. Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5. Nat. Commun. 8, 14408 (2017).
Article ADS PubMed PubMed Central Google Scholar
Fukutani, K. et al. Electrical tuning of the excitonic insulator ground state of Ta2NiSe5. Phys. Rev. Lett. 123, 206401 (2019).
Article ADS PubMed Google Scholar
Werdehausen, D. et al. Coherent order parameter oscillations in the ground state of the excitonic insulator Ta2NiSe5. Sci. Adv. 4, eaap8652 (2018).
Article ADS PubMed PubMed Central Google Scholar
Baldini, E. et al. The spontaneous symmetry breaking in Ta2NiSe5 is structural in nature. Proc. Natl Acad. Sci. USA 120, e2221688120 (2023).
Article PubMed PubMed Central Google Scholar
Hossain, M. S. et al. Discovery of a topological exciton insulator with tunable momentum order. Preprint at https://arxiv.org/abs/2312.15862 (2023).
Huang, J. et al. Evidence for an excitonic insulator state in Ta2Pd3Te5. Phys. Rev. X 14, 011046 (2024).
Jia, Y. et al. Evidence for a monolayer excitonic insulator. Nat. Phys. 18, 87–93 (2022). This paper, together with ref. 65, identified a 2D natural crystal (monolayer WTe2) as an excitonic insulator.
Article Google Scholar
Sun, B. et al. Evidence for equilibrium exciton condensation in monolayer WTe2. Nat. Phys. 18, 94–99 (2022). This paper, together with ref. 64, identified a 2D natural crystal (monolayer WTe2) as an excitonic insulator.
Article ADS Google Scholar
Lee, P. A. Quantum oscillations in the activated conductivity in excitonic insulators: possible application to monolayer WTe2. Phys. Rev. B 103, L041101 (2021).
Article ADS Google Scholar
Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).
Article ADS PubMed Google Scholar
Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).
Article Google Scholar
Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe2. Nat. Phys. https://doi.org/10.1038/nphys4174 (2017).
Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).
Article ADS MathSciNet PubMed Google Scholar
Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926–929 (2018).
Article ADS MathSciNet PubMed Google Scholar
Sajadi, E. et al. Gate-induced superconductivity in a monolayer topological insulator. Science 362, 922–925 (2018).
Article ADS PubMed Google Scholar
Wang, P. et al. Landau quantization and highly mobile fermions in an insulator. Nature 589, 225–229 (2021). This paper, together with ref. 74, reported quantum oscillations in monolayer WTe2 insulator.
Article ADS PubMed Google Scholar
Tang, Y. et al. Sign-alternating thermoelectric quantum oscillations and insulating Landau levels in monolayer WTe2. Preprint at https://arxiv.org/abs/2405.09665 (2024). This paper, together with ref. 73, reported quantum oscillations in monolayer WTe2 insulator.
Song, T. et al. Unconventional superconducting quantum criticality in monolayer WTe2. Nat. Phys. 20, 269–274 (2024).
Article Google Scholar
He, W.-Y. & Lee, P. A. Electronic density of states of a U(1) quantum spin liquid with spinon Fermi surface. I. Orbital magnetic field effects. Phys. Rev. B 107, 195155 (2023).
Article ADS Google Scholar
Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).
Article ADS MathSciNet Google Scholar
Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).
Article PubMed Google Scholar
Knolle, J. & Moessner, R. A field guide to spin liquids. Annu. Rev. Condens. Matter Phys. 10, 451–472 (2019).
Article ADS Google Scholar
Takagi, H., Takayama, T., Jackeli, G., Khaliullin, G. & Nagler, S. E. Concept and realization of Kitaev quantum spin liquids. Nat. Rev. Phys. 1, 264–280 (2019).
Article Google Scholar
Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2017).
Article ADS PubMed Google Scholar
Law, K. T. & Lee, P. A. 1T-TaS2 as a quantum spin liquid. Proc. Natl Acad. Sci. USA 114, 6996–7000 (2017).
Article ADS PubMed PubMed Central Google Scholar
He, W.-Y., Xu, X. Y., Chen, G., Law, K. T. & Lee, P. A. Spinon Fermi surface in a cluster Mott insulator model on a triangular lattice and possible application to 1T-TaS2. Phys. Rev. Lett. 121, 046401 (2018).
Article ADS PubMed Google Scholar
Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 7, 960–965 (2008).
Article ADS PubMed Google Scholar
Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270–276 (2015).
Article ADS PubMed Google Scholar
Wang, Y. D. et al. Band insulator to Mott insulator transition in 1T-TaS2. Nat. Commun. 11, 4215 (2020).
Article ADS PubMed PubMed Central Google Scholar
Ritschel, T., Berger, H. & Geck, J. Stacking-driven gap formation in layered 1T-TaS2. Phys. Rev. B 98, 195134 (2018).
Article ADS Google Scholar
Wu, Z. et al. Effect of stacking order on the electronic state of 1T-TaS2. Phys. Rev. B 105, 035109 (2022).
Article ADS MathSciNet Google Scholar
Chen, Y. et al. Strong correlations and orbital texture in single-layer 1T-TaSe2. Nat. Phys. 16, 218–224 (2020).
Article Google Scholar
Ruan, W. et al. Evidence for quantum spin liquid behaviour in single-layer 1T-TaSe2 from scanning tunnelling microscopy. Nat. Phys. 17, 1154–1161 (2021).
Article Google Scholar
Chen, Y. et al. Evidence for a spinon Kondo effect in cobalt atoms on single-layer 1T-TaSe2. Nat. Phys. 18, 1335–1340 (2022).
Article Google Scholar
Zhang, Q. et al. Quantum spin liquid signatures in monolayer 1T-NbSe2. Nat. Commun. 15, 2336 (2024).
Article ADS PubMed PubMed Central Google Scholar
Liu, L. et al. Direct identification of Mott Hubbard band pattern beyond charge density wave superlattice in monolayer 1T-NbSe2. Nat. Commun. 12, 1978 (2021).
Article ADS PubMed PubMed Central Google Scholar
Liu, M. et al. Monolayer 1T-NbSe2 as a 2D-correlated magnetic insulator. Sci. Adv. 7, eabi6339 (2021).
Article ADS PubMed PubMed Central Google Scholar
Nakata, Y. et al. Monolayer 1T-NbSe2 as a Mott insulator. NPG Asia Mater. 8, e321–e321 (2016).
Article Google Scholar
Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006). This paper provided an exactly solvable model for quantum spin liquids.
Article ADS MathSciNet Google Scholar
Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).
Article ADS PubMed Google Scholar
Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733–740 (2016).
Article ADS PubMed Google Scholar
Plumb, K. W. et al. α-RuCl3: a spin-orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B 90, 041112 (2014).
Article ADS Google Scholar
Leahy, I. A. et al. Anomalous thermal conductivity and magnetic torque response in the honeycomb magnet α-RuCl3. Phys. Rev. Lett. 118, 187203 (2017).
Article ADS PubMed Google Scholar
Banerjee, A. et al. Excitations in the field-induced quantum spin liquid state of α-RuCl3. npj Quantum Mater. 3, 8 (2018).
Article ADS Google Scholar
Hentrich, R. et al. Unusual phonon heat transport in α-RuCl3: strong spin-phonon scattering and field-induced spin gap. Phys. Rev. Lett. 120, 117204 (2018).
Article ADS PubMed Google Scholar
McClarty, P. A. et al. Topological magnons in Kitaev magnets at high fields. Phys. Rev. B 98, 060404 (2018).
Article ADS Google Scholar
Joshi, D. G. Topological excitations in the ferromagnetic Kitaev-Heisenberg model. Phys. Rev. B 98, 060405 (2018).
Article ADS Google Scholar
Gordon, J. S., Catuneanu, A., Sørensen, E. S. & Kee, H.-Y. Theory of the field-revealed Kitaev spin liquid. Nat. Commun. 10, 2470 (2019).
Article ADS PubMed PubMed Central Google Scholar
Hickey, C. & Trebst, S. Emergence of a field-driven U(1) spin liquid in the Kitaev honeycomb model. Nat. Commun. 10, 530 (2019).
Article ADS PubMed PubMed Central Google Scholar
Ponomaryov, A. N. et al. Nature of magnetic excitations in the high-field phase of α-RuCl3. Phys. Rev. Lett. 125, 037202 (2020).
Article ADS PubMed Google Scholar
Wang, Z. et al. Magnetic excitations and continuum of a possibly field-induced quantum spin liquid in α-RuCl3. Phys. Rev. Lett. 119, 227202 (2017).
Article ADS PubMed Google Scholar
Czajka, P. et al. Planar thermal Hall effect of topological bosons in the Kitaev magnet α-RuCl3. Nat. Mater. 22, 36–41 (2023). This paper reported the thermal Hall data incompatible with the half-quantization expected for the Majorana transport in α-RuCl3.
Article ADS PubMed Google Scholar
Czajka, P. et al. Oscillations of the thermal conductivity in the spin-liquid state of α-RuCl3. Nat. Phys. 17, 915–919 (2021). This paper reported the magneto-oscillations in the thermal conductivity of α-RuCl3.
Article Google Scholar
Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).
Article ADS PubMed Google Scholar
Yokoi, T. et al. Half-integer quantized anomalous thermal Hall effect in the Kitaev material candidate α-RuCl3. Science 373, 568–572 (2021).
Article ADS MathSciNet PubMed Google Scholar
Zhang, E. Z., Chern, L. E. & Kim, Y. B. Topological magnons for thermal Hall transport in frustrated magnets with bond-dependent interactions. Phys. Rev. B 103, 174402 (2021).
Article ADS Google Scholar
Bruin, J. A. N. et al. Robustness of the thermal Hall effect close to half-quantization in α-RuCl3. Nat. Phys. 18, 401–405 (2022).
Article Google Scholar
Villadiego, I. S. Pseudoscalar U(1) spin liquids in α-RuCl3. Phys. Rev. B 104, 195149 (2021).
Article ADS Google Scholar
Bruin, J. A. N. et al. Origin of oscillatory structures in the magnetothermal conductivity of the putative Kitaev magnet α-RuCl3. APL Mater. 10, 090703 (2022).
Kubota, Y., Tanaka, H., Ono, T., Narumi, Y. & Kindo, K. Successive magnetic phase transitions in α-RuCl3: XY-like frustrated magnet on the honeycomb lattice. Phys. Rev. B 91, 094422 (2015).
Article ADS Google Scholar
Cao, H. B. et al. Low-temperature crystal and magnetic structure of α-RuCl3. Phys. Rev. B 93, 134423 (2016).
Article ADS Google Scholar
Lefrançois, É. et al. Oscillations in the magnetothermal conductivity of α−RuCl3: evidence of transition anomalies. Phys. Rev. B 107, 064408 (2023).
Article ADS Google Scholar
Zhang, H. et al. Sample-dependent and sample-independent thermal transport properties of α-RuCl3. Phys. Rev. Mater. 7, 114403 (2023).
Article Google Scholar
Zhang, H. et al. Stacking disorder and thermal transport properties of α-RuCl3. Phys. Rev. Mater. 8, 014402 (2024).
Article Google Scholar
Zhang, H. et al. Anisotropy of thermal conductivity oscillations in relation to the Kitaev spin liquid phase. Preprint at https://arxiv.org/abs/2310.03917 (2023).
Hong, X. et al. Phonon thermal transport shaped by strong spin-phonon scattering in a Kitaev material Na2Co2TeO6. npj Quantum Mater. 9, 18 (2024).
Article ADS Google Scholar
Hong, X. et al. Spinon heat transport in the three-dimensional quantum magnet PbCuTe2O6. Phys. Rev. Lett. 131, 256701 (2023).
Article ADS PubMed Google Scholar
Yamashita, M. et al. Presence and absence of itinerant gapless excitations in the quantum spin liquid candidate EtMe2Sb[Pd(dmit)2]2. Phys. Rev. B 101, 140407 (2020).
Article ADS Google Scholar
Ni, J. M. et al. Absence of magnetic thermal conductivity in the quantum spin liquid candidate EtNe3Sb[Pd(dmit)2]2. Phys. Rev. Lett. 123, 247204 (2019).
Article ADS PubMed Google Scholar
Bourgeois-Hope, P. et al. Thermal conductivity of the quantum spin liquid candidate EtMe3Sb[Pd(dnit)2]2: no evidence of mobile gapless excitations. Phys. Rev. X 9, 041051 (2019).
Google Scholar
Ioffe, L. B. & Larkin, A. I. Gapless fermions and gauge fields in dielectrics. Phys. Rev. B 39, 8988–8999 (1989). This paper developed the so-called Ioffe-Larkin rule, which is important for understanding response functions of fractionalized systems.
Article ADS Google Scholar
Lee, P. A. & Nagaosa, N. Gauge theory of the normal state of high-Tc superconductors. Phys. Rev. B 46, 5621–5639 (1992).
Article ADS Google Scholar
He, W.-Y. & Lee, P. A. Electronic density of states of a U1 quantum spin liquid with spinon Fermi surface. I. Orbital magnetic field effects. Phys. Rev. B 107, 195155 (2023).
Article ADS Google Scholar
Tan, B. S. et al. Unconventional Fermi surface in an insulating state. Science 349, 287–290 (2015).
Article ADS PubMed Google Scholar
Li, G. et al. Two-dimensional Fermi surfaces in Kondo insulator SmB6. Science 346, 1208–1212 (2014).
Article ADS PubMed Google Scholar
Xiang, Z. et al. Quantum oscillations of electrical resistivity in an insulator. Science 362, 65–69 (2018).
Article ADS PubMed Google Scholar
Han, Z., Li, T., Zhang, L., Sullivan, G. & Du, R.-R. Anomalous conductance oscillations in the hybridization gap of InAs/GaSb quantum wells. Phys. Rev. Lett. 123, 126803 (2019).
Article ADS PubMed Google Scholar
Xiao, D., Liu, C.-X., Samarth, N. & Hu, L.-H. Anomalous quantum oscillations of interacting electron-hole gases in inverted type-II InAs/GaSb quantum wells. Phys. Rev. Lett. 122, 186802 (2019).
Article ADS PubMed Google Scholar
Zheng, G. et al. Unconventional magnetic oscillations in Kagome Mott insulators. Preprint at arXiv https://arxiv.org/abs/2310.07989 (2023).
Li, L., Sun, K., Kurdak, C. & Allen, J. W. Emergent mystery in the Kondo insulator samarium hexaboride. Nat. Rev. Phys. 2, 463–479 (2020).
Article Google Scholar
Shen, H. & Fu, L. Quantum oscillation from in-gap states and a non-Hermitian Landau level problem. Phys. Rev. Lett. 121, 026403 (2018).
Article ADS PubMed Google Scholar
Zhang, L., Song, X.-Y. & Wang, F. Quantum oscillation in narrow-gap topological insulators. Phys. Rev. Lett. 116, 046404 (2016).
Article ADS PubMed Google Scholar
Ram, P. & Kumar, B. Theory of quantum oscillations of magnetization in Kondo insulators. Phys. Rev. B 96, 075115 (2017).
Article ADS Google Scholar
Knolle, J. & Cooper, N. R. Quantum oscillations without a Fermi surface and the anomalous de Haas–van Alphen effect. Phys. Rev. Lett. 115, 146401 (2015).
Article ADS PubMed Google Scholar
Knolle, J. & Cooper, N. R. Anomalous de Haas–van Alphen effect in InAs/GaSb quantum wells. Phys. Rev. Lett. 118, 176801 (2017).
Article ADS PubMed Google Scholar
Erten, O., Chang, P.-Y., Coleman, P. & Tsvelik, A. M. Skyrme insulators: insulators at the brink of superconductivity. Phys. Rev. Lett. 119, 057603 (2017).
Article ADS PubMed Google Scholar
He, W.-Y. & Lee, P. A. Quantum oscillation of thermally activated conductivity in a monolayer WTe2-like excitonic insulator. Phys. Rev. B 104, L041110 (2021).
Article ADS Google Scholar
Zhu, J., Li, T., Young, A. F., Shan, J. & Mak, K. F. Quantum oscillations in 2D insulators induced by graphite gates. Phys. Rev. Lett. 127, 247702 (2021).
Article ADS PubMed Google Scholar
Cooper, N. R. & Kelsall, J. Quantum oscillations in an impurity-band Anderson insulator. Sci. Post Phys.15, 118 (2023).
Article ADS MathSciNet Google Scholar
Pirie, H. et al. Visualizing the atomic-scale origin of metallic behavior in Kondo insulators. Science 379, 1214–1218 (2023).
Article ADS PubMed Google Scholar
Pal, H. K., Piéchon, F., Fuchs, J.-N., Goerbig, M. & Montambaux, G. Chemical potential asymmetry and quantum oscillations in insulators. Phys. Rev. B 94, 125140 (2016).
Article ADS Google Scholar
Singh, G. & Pal, H. K. Effect of many-body interaction on de Haas–van Alphen oscillations in insulators. Phys. Rev. B 108, L201103 (2023).
Article ADS Google Scholar
Wu, S. The detection of unconventional quantum oscillations in insulating 2D materials. 2D Mater. 11, 033004 (2024).
Article Google Scholar
Checkelsky, J. G. & Ong, N. P. Thermopower and Nernst effect in graphene in a magnetic field. Phys. Rev. B 80, 81413 (2009).
Article ADS Google Scholar
Zuev, Y. M., Chang, W. & Kim, P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 96807 (2009).
Article ADS Google Scholar
Ni, D., Gui, X., Powderly, K. M. & Cava, R. J. Honeycomb‐structure RuI3, a new quantum material related to α‐RuCl3. Adv. Mater. 34, e2106831 (2022).
Zhong, R., Gao, T., Ong, N. P. & Cava, R. J. Weak-field induced nonmagnetic state in a Co-based honeycomb. Sci. Adv. 6, eaay6953 (2020).
Article ADS PubMed PubMed Central Google Scholar
Zhang, X. et al. A magnetic continuum in the cobalt-based honeycomb magnet BaCo2(AsO4)2. Nat. Mater. 22, 58–63 (2023).
Article ADS PubMed Google Scholar
Halloran, T. et al. Geometrical frustration versus Kitaev interactions in BaCo2(AsO4)2. Proc. Natl Acad. Sci. USA 120, e2215509119 (2023).
Article PubMed PubMed Central Google Scholar
Onyszczak, M. et al. A platform for far-infrared spectroscopy of quantum materials at millikelvin temperatures. Rev. Sci. Instrum. 94, 103903 (2023).
Article ADS PubMed Google Scholar
Potter, A. C., Senthil, T. & Lee, P. A. Mechanisms for sub-gap optical conductivity in Herbertsmithite. Phys. Rev. B 87, 245106 (2013).
Article ADS Google Scholar
Wan, Y. & Armitage, N. P. Resolving continua of fractional excitations by spinon echo in THz 2D coherent spectroscopy. Phys. Rev. Lett. 122, 257401 (2019).
Article ADS PubMed Google Scholar
Hart, O. & Nandkishore, R. Extracting spinon self-energies from two-dimensional coherent spectroscopy. Phys. Rev. B 107, 205143 (2023).
Article ADS Google Scholar
Gao, Q., Liu, Y., Liao, H. & Wan, Y. Two-dimensional coherent spectrum of interacting spinons from matrix product states. Phys. Rev. B 107, 165121 (2023).
Article ADS Google Scholar
Chatterjee, S., Rodriguez-Nieva, J. F. & Demler, E. Diagnosing phases of magnetic insulators via noise magnetometry with spin qubits. Phys. Rev. B 99, 104425 (2019).
Article ADS Google Scholar
Khoo, J. Y., Pientka, F. & Sodemann, I. The universal shear conductivity of Fermi liquids and spinon Fermi surface states and its detection via spin qubit noise magnetometry. New J. Phys. 23, 113009 (2021).
Article ADS Google Scholar
Lee, P. A. & Morampudi, S. Proposal to detect emergent gauge field and its Meissner effect in spin liquids using NV centers. Phys. Rev. B 107, 195102 (2023).
Article ADS Google Scholar
Han, W., Maekawa, S. & Xie, X.-C. Spin current as a probe of quantum materials. Nat. Mater. 19, 139–152 (2020).
Article ADS PubMed Google Scholar
Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023). This paper reported the fractional quantum anomalous Hall effect.
Article ADS PubMed Google Scholar
Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).
Google Scholar
Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).
Article ADS PubMed Google Scholar
Anderson, E. et al. Programming correlated magnetic states with gate-controlled moiré geometry. Science 381, 325–330 (2023).
Article ADS PubMed Google Scholar
Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).
Article ADS PubMed Google Scholar
Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).
Article ADS PubMed Google Scholar
Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106, 236804 (2011).
Article ADS PubMed Google Scholar
Sheng, D. N., Gu, Z.-C., Sun, K. & Sheng, L. Fractional quantum Hall effect in the absence of Landau levels. Nat. Commun. 2, 389 (2011).
Article ADS PubMed Google Scholar
Regnault, N. & Bernevig, B. A. Fractional Chern insulator. Phys. Rev. X 1, 021014 (2011).
Google Scholar
Tang, E., Mei, J.-W. & Wen, X.-G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).
Article ADS PubMed Google Scholar
Sun, K., Gu, Z., Katsura, H. & Das Sarma, S. Nearly flatbands with nontrivial topology. Phys. Rev. Lett. 106, 236803 (2011).
Article ADS PubMed Google Scholar
Baird, D., Hughes, R. I. G. & Nordmann, A. Heinrich Hertz: Classical Physicist, Modern Philosopher (Springer-Verlag, 1998).
Laumann, C. R. & Moessner, R. Hybrid dyons, inverted Lorentz force, and magnetic Nernst effect in quantum spin ice. Phys. Rev. B 108, L220402 (2023). This paper predicted a novel variant of the Nernst effect in insulators induced by physics of quantum spin ice.
Article ADS Google Scholar
Download references
S.W. acknowledges support from Gordon and Betty Moore Foundation’s EPiQS Initiative grant no. GBMF11946, AFOSR through a Young Investigator Award (grant no. FA9550-23-1-0140), ONR through a Young Investigator Award (grant no. N00014-21-1-2804), NSF through a CAREER award (grant no. DMR-1942942) and the Sloan Foundation. N.P.O., R.J.C., L.M.S. and S.W. acknowledge support from the Materials Research Science and Engineering Center programme of the NSF (grant no. DMR-2011750). N.P.O. acknowledges support from the United States Department of Energy (grant no. DE-SC0017863) (which supported the κxy experiments on α-RuCl3) and the Gordon and Betty Moore Foundation through grant no. GBMF9466. L.M.S. acknowledges support from the Gordon and Betty Moore Foundation through grant no. GBMF9064 and the David and Lucile Packard Foundation. S.W. and L.M.S. acknowledge support from the Eric and Wendy Schmidt Transformative Technology Fund at Princeton. The research on forefront electronic materials in the laboratory of R.J.C. at Princeton is supported by the Gordon and Betty Moore Foundation through grant GBMF-9066 and the US DOE division of Basic Energy Sciences (grant no. DE-FG02-98R45706). I.S. acknowledges support from the Deutsche Forschungsgemeinschaft through research grant project numbers 542614019 and 518372354. R.M. acknowledges funding by the Deutsche Forschungsgemeinschaft under grants SFB 1143 (project-id 247310070) and the cluster of excellence ct.qmat (grant no. EXC 2147, project-id 390858490).
Department of Physics, Princeton University, Princeton, NJ, USA
Sanfeng Wu & N. P. Ong
Department of Chemistry, Princeton University, Princeton, NJ, USA
Leslie M. Schoop & Robert J. Cava
Institute for Theoretical Physics, University of Leipzig, Leipzig, Germany
Inti Sodemann
Max-Planck Institute for the Physics of Complex Systems, Dresden, Germany
Roderich Moessner
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
S.W. and N.P.O. initiated the work. I.S. and R.M. wrote the theory parts. S.W., N.P.O., R.J.C. and L.M.S. wrote the experimental parts. All authors discussed and contributed to the overall writing and revisions of this work.
Correspondence to Sanfeng Wu or N. P. Ong.
The authors declare no competing interests.
Nature thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
Wu, S., Schoop, L.M., Sodemann, I. et al. Charge-neutral electronic excitations in quantum insulators. Nature (2024). https://doi.org/10.1038/s41586-024-08091-8
Download citation
Received: 29 March 2021
Accepted: 20 September 2024
Published: 13 November 2024
DOI: https://doi.org/10.1038/s41586-024-08091-8
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative